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Abstract: In this communication, we achieve special Diophantine triples involving 
second-order polynomials, where the product of any two members of the set subtracted by 
their sum and increased by integer-coefficient polynomial yields a perfect square. Also 
provides graphical representation of the Dio-3 Triples using MATLAB. 
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1. INTRODUCTION 
The enormous numbers of unresolved issues in number theory that appear to be solvable 
from the outside make it attractive. Unsolved issues in number theory are unsolved for a 
reason, of course. Although they appear to be simple, numbers have a remarkably 
complex structure that we only partially comprehend [9-13]. Diophantus researched the 
feature that the product of any two of their separate components is one less than a square 

has a very long history. If xi .x j  n is a perfect square for every1  i  j  s , then a 

collection of s unique non-null integers (g1, g2,. ... gs ) is referred to as a Dio s-tuple with 

attributes D(n) .A number of mathematicians explored the existence of Diophantine triples 

with the property D(n) for any integer n and, moreover, for any linear polynomial in n . 
One might now recommend a thorough examination of many topics relating to 
Diophantine triples [1–8]. 

In this study, we provide unique Diophantine triples (a,b, c) involving polynomials, 

where the product of any two members of the set, subtracted by their sum, and increased 
by an integer-coefficient polynomial is a perfect square. Also provides graphical 
representation of the Dio-3 Triples using MATLAB. 

 
 
2. NOTATION 

starn : Star number of rank n  6n(n -1)  1 
 

3. BASIC DEFINITION 
 

A set of three different second order polynomial with integer coefficients 

 

(a1, a2 , a3 ) is 

said to be a special Diophantine triple with property D(n)if ai  aj   (ai  aj )  n is a 

perfect square for all 1  i  j  3, where n may be non-zero integer or polynomial with 

integer coefficients. 
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4. ANALYTICAL APPROACH 

4.1. Development of the distinctive dio-3 triples using the second order 

polynomial 6n2 - 6n  1and 6n2 -18n  1 

Let a  6n2 - 6n  1and b  6n2 -18n  1 
 

ab  (a  b)  72n  10  36n4  144n3  108n2  72n  9 

 (6n2  12n  3)2 

 2 

 
 
 
 
 
 
 
 
 
 
 
 

Setting   y  (a 1)T and   y  (b 1)T 

(5) 

Applying Equation (5)in (4)onemayget 
 

y2  (b 1)(a 1)T 2  72n  9 

(6) 

Initial solution of (6) is given by, 
 

y  (6n2 12n  3) and T0  1 
 

Since   y  (a 1)T and   y  (b 1)T , we obtain that, 

  12n2 18n  3 

Therefore, the equation (2) becomes, 
 

ac  c  a  72n  10   2 

(6n2  6n)c  144n4  432n3  258n2  30n 

 c  24n2  48n  5 

 (1)  

Equation (1) is a perfect square.  

ab  (a  b)  72n  10  2 where   6n2 12n  3 
 

Allowing c to be a non-zero integer, 

ac  (a  c)  72n  10   2 

  
(2) 

bc  (b  c)  72n  10  2
 

 (3) 

 
Solving (2) and (3) one may get 

  

(a  b)  (b  a)(72n  10)  (b 1) 2  (a  1)2
 

 
(4) 
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Hence, the triples (a,b,c)  (6n2  6n  1, 6n2 18n  1, 24n2  48n  5) are 

Diophantine triples with the property D(72n 10) . 

The following table provides some numerical illustrations. 

Table 1 
 

n Diophantine Triples D(72n 10) 

1 (1, 11,  29) 82 

2 (13, 1,  5) 154 

3 (37,1,67) 226 

4 (73, 25,187) 298 
 
 

Remarkable Observation: 

It    is    noted    that,     the     above     second     order     polynomial     is     of     the 

form (a,b, c)  (starn , starn 1  12, 4starn 2  72n 153) . Also all the triples are odd 

with even number attributes. 

4.2. Development of the distinctive dio-3 triples using the second order 

polynomial 6n2  6n  1 and 6n2  30n  31 

Let a  6n2  6n  1 and b  6n2  30n  31 
 

ab  (a  b)  36n  145  36n4  288n3  720n2  576n  144 

 (6n2  24n  12)2 

 2 

 
 
 
 
 
 
 
 
 
 
 
 
 

(7) 
 

 
Equation (7) is a perfect square. 

ab  (a  b)  36n  145  2 where   6n2  24n  12 

Allowing c to be a non-zero integer, 

ac  (a  c)  36n  145   2 

bc  (b  c)  36n  145  2
 

 
 
 
 
 

(8) 

(9) 
 

 
Solving (8) and (9) one may get 

(a  b)  (b  a)(36n  145)  (b 1) 2  (a 1)2
 

 
 

(10) 
 

Setting   y  (a 1)T and   y  (b 1)T 

(11) 

Applying Equation(11) in (10) one may get 
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n n 1 

n     n 1 

0 

y2  (b  1)(a 1)T 2  36n  145 

(12) 

Initial solution of (12) is given by, 
 

y  (6n2  24n  12) and T0  1 
 

Since   y  (a 1)T and   y  (b 1)T , we obtain that, 

  12n2  42n  12 

Therefore, the equation (7) becomes, 

ac  c  a  36n  145   2 

(6n2  18n)c  144n4  1008n3  2058n2  990n 

 c  24n2  96n  55 
 

Hence, the triples (a,b, c)  (6n2  6n  1 , 6n2  30n  31, 24n2  96n  55) are 

Diophantine triples with the property D(36n 145). 

The following table provides some numerical illustrations 

Table 2 
 

n Diophantine Triples D(36n 145) 

1 (11,7, 17) 109 

2 (11,  5,  41) 73 

3 (1,  5, 17) 37 

4 (25,7,55) 1 

 

Remarkable Observation: 

It    is    noted    that,     the     above     second     order     polynomial     is     of     the 

form (a,b, c)  (starn , starn 2  6, 4starn 3  72n  237). Also all the triples and their 

attributes are odd. 
 

 

4.3. Development of the distinctive dio-3 triples using the second order 

polynomial 6n2  5and 6n2 12n  13 

Let a  6n2  5and a  6n2  12n  13 
 

a a  30  36n4  72n3  24n2  60n  25 

 (6n2  6n  5)2 

 2 

 
 
 
 
 
 
 
 

(13) 
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n

n 1 

n    n 1 

n n 1 

n n1 

Equation (7) is a perfect square. 

a a  30  2 where   6n2  6n  5 
 

Allowing c to be a non-zero integer, 

a c  30   2 

a c  30  2
 

 
 
 
 
 

(14) 

(15) 

 

Solving (14) and (15) one may get 

(a  a )c   2   2 

(16) 

Setting   an   and   an 1  

(17) 

Applying Equation(17) in (16) one may get 

c  an  an 1  2

 24n2  24n  14 

(18) 

Hence, the triples (a , a , c)  (6n2  5, 6n2 12n  13, 24n2  24n  14) are 

Diophantine triples with the property D(30) . 

 

 
The following table provides some numerical illustrations 

Table 3 
 

n Diophantine Triples D(30) 

1 (1,  5, 14) 30 

2 (19,1,34) 30 

3 (49,19,130) 30 

4 (91, 49,274) 30 

 

Remarkable Observation: 

It is noted that, the above second order polynomial is of the form 

(an , an 1, c)  (starn  6n  6, starn 1  6n, 4starn 2  96n 162) 

JOURNAL OF INTERNATIONAL MANAGEMENT (ISSN NO: 1075-4253) VOLUME 30 ISSUE 2 2024

PAGE N0: 44



 

 

 

 
 

5. CONCLUSION 

In this article, we have shown a few instances of how to build unique Dio 3 tuples 
involving the second order polynomial with the right attributes. Also provides graphical 
representation of the Dio-3 Triples using MATLAB. In conclusion, one can look for Dio 
3 tuples for various polynomials with their corresponding attributes. 
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