Generating Dio-3 Triples using the Second-Order Polynomials with Incisive Properties

Janaki G¹ and Gowri Shankari A² ¹Associate Professor, Cauvery College for Women (Autonomous), Trichy – 18, India; ²Assistant Professor, Cauvery College for Women (Autonomous), Trichy – 18, India;

Abstract: In this communication, we achieve special Diophantine triples involving second-order polynomials, where the product of any two members of the set subtracted by their sum and increased by integer-coefficient polynomial yields a perfect square. Also provides graphical representation of the Dio-3 Triples using MATLAB.

Keywords: Special Diophantine Triples, Perfect Square, Star Number.

1. INTRODUCTION

The enormous numbers of unresolved issues in number theory that appear to be solvable from the outside make it attractive. Unsolved issues in number theory are unsolved for a reason, of course. Although they appear to be simple, numbers have a remarkably complex structure that we only partially comprehend [9-13]. Diophantus researched the feature that the product of any two of their separate components is one less than a square has a very long history. If $x_i \cdot x_j + n$ is a perfect square for every $1 \le i < j \le s$, then a collection of s unique non-null integers (g_1, g_2, \dots, g_s) is referred to as a Dio s-tuple with

attributes D(n). A number of mathematicians explored the existence of Diophantine triples with the property D(n) for any integer n and, moreover, for any linear polynomial in n. One might now recommend a thorough examination of many topics relating to Diophantine triples [1–8].

In this study, we provide unique Diophantine triples (a,b,c) involving polynomials, where the product of any two members of the set, subtracted by their sum, and increased by an integer-coefficient polynomial is a perfect square. Also provides graphical representation of the Dio-3 Triples using MATLAB.

NOTATION

*star*_{*n*}: Star number of rank n = 6n(n - 1) + 1

2.

3. BASIC DEFINITION

A set of three different second order polynomial with integer coefficients (a_1, a_2, a_3) is said to be a special Diophantine triple with property D(n) if $a_i * a_j - (a_i + a_j) + n$ is a perfect square for all $1 \le i < j \le 3$, where *n* may be non-zero integer or polynomial with integer coefficients.

4. ANALYTICAL APPROACH

4.1. Development of the distinctive dio-3 triples using the second order polynomial $6n^2 - 6n + 1$ and $6n^2 - 18n + 1$

Let $a = 6n^2 - 6n + 1$ and $b = 6n^2 - 18n + 1$

$$ab - (a + b) + 72n + 10 = 36n^{4} - 144n^{3} + 108n^{2} + 72n + 9$$
$$= (6n^{2} - 12n - 3)^{2}$$
$$= \lambda^{2}$$
(1)

Equation (1) is a perfect square.

 $ab - (a + b) + 72n + 10 = \lambda^2$ where $\lambda = 6n^2 - 12n - 3$

Allowing c to be a non-zero integer,

$$ac - (a + c) + 72n + 10 = \mu^2$$
⁽²⁾

$$bc - (b + c) + 72n + 10 = \omega^2$$
(3)

Solving (2) and (3) one may get

$$(a-b) + (b-a)(72n+10) = (b-1)\mu^2 - (a-1)\omega^2$$
(4)

Setting $\mu = y + (a-1)T$ and $\omega = y + (b-1)T$ (5)

Applying Equation (5)in (4)onemayget

$$y^{2} = (b-1)(a-1)T^{2} + 72n + 9$$
(6)

Initial solution of (6) is given by,

 $y_0 = (6n^2 - 12n - 3)$ and $T_0 = 1$

Since $\mu = y + (a-1)T$ and $\omega = y + (b-1)T$, we obtain that,

 $\mu = 12n^2 - 18n - 3$

Therefore, the equation (2) becomes,

 $ac - c - a + 72n + 10 = \mu^{2}$ $\Rightarrow (6n^{2} - 6n)c = 144n^{4} - 432n^{3} + 258n^{2} + 30n$ $\Rightarrow c = 24n^{2} - 48n - 5$ Hence, the triples $(a,b,c) = (6n^2 - 6n + 1, 6n^2 - 18n + 1, 24n^2 - 48n - 5)$ are Diophantine triples with the property D(72n + 10).

The following table provides some numerical illustrations.

n	Diophantine Triples	<i>D</i> (72 <i>n</i> +10)
1	(1,-11,-29)	82
2	(13,-1,-5)	154
3	(37,1,67)	226
4	(73,25,187)	298

Table 1

Remarkable Observation:

It is noted that, the above second order polynomial is of the form $(a,b, c) = (star_n, star_{n-1} - 12, 4star_{n-2} + 72n - 153)$. Also all the triples are odd with even number attributes.

4.2. Development of the distinctive dio-3 triples using the second order polynomial $6n^2 - 6n + 1$ and $6n^2 - 30n + 31$

Let $a = 6n^2 - 6n + 1$ and $b = 6n^2 - 30n + 31$

$$ab - (a + b) - 36n + 145 = 36n^{4} - 288n^{3} + 720n^{2} - 576n + 144$$
$$= (6n^{2} - 24n + 12)^{2}$$
$$= \lambda^{2}$$
(7)

Equation (7) is a perfect square.

$$ab - (a+b) - 36n + 145 = \lambda^{2} \text{ where } \lambda = 6n^{2} - 24n + 12$$

Allowing c to be a non-zero integer,
$$ac - (a+c) - 36n + 145 = \mu^{2}$$
(8)

$$bc - (b + c) - 36n + 145 = \omega^2$$
(9)

Solving (8) and (9) one may get

$$(a-b) + (b-a)(-36n+145) = (b-1)\mu^2 - (a-1)\omega^2$$
(10)

Setting $\mu = y + (a-1)T$ and $\omega = y + (b-1)T$ (11)

Applying Equation(11) in (10) one may get

$$y^{2} = (b-1)(a-1)T^{2} - 36n + 145$$
(12)

Initial solution of (12) is given by,

 $y_0 = (6n^2 - 24n + 12)$ and $T_0 = 1$

Since $\mu = y + (a-1)T$ and $\omega = y + (b-1)T$, we obtain that,

 $\mu = 12n^2 - 42n + 12$

Therefore, the equation (7) becomes,

$$ac - c - a - 36n + 145 = \mu^2$$

$$\Rightarrow (6n^2 - 18n)c = 144n^4 - 1008n^3 + 2058n^2 - 990n$$

$$\Rightarrow c = 24n^2 - 96n + 55$$

Hence, the triples $(a,b,c) = (6n^2 - 6n + 1, 6n^2 - 30n + 31, 24n^2 - 96n + 55)$ are Diophantine triples with the property D(-36n + 145).

The following table provides some numerical illustrations

n	Diophantine Triples	<i>D</i> (-36 <i>n</i> +145)
1	(-11,7,-17)	109
2	(-11,-5,-41)	73
3	(1, -5, -17)	37
4	(25,7,55)	1

Table 2

Remarkable Observation:

It is noted that, the above second order polynomial is of the form $(a,b, c) = (star_n, star_{n-2} - 6, 4star_{n-3} + 72n - 237)$. Also all the triples and their attributes are odd.

4.3. Development of the distinctive dio-3 triples using the second order polynomial $6n^2 - 5$ and $6n^2 - 12n + 13$

```
Let a_n = 6n^2 - 5 and a_{n-1} = 6n^2 - 12n + 13

a_n a_{n-1} + 30 = 36n^4 - 72n^3 - 24n^2 + 60n + 25

= (6n^2 - 6n - 5)^2

= \lambda^2
(13)
```

Equation (7) is a perfect square.

$$a_n a_{n-1} + 30 = \lambda^2$$
 where $\lambda = 6n^2 - 6n - 5$
Allowing c to be a non-zero integer,
 $a_n a_{n-1} + 20 = \mu^2$ (14)

$$a_n c + 30 = \mu^2$$
 (14)

$$a_{n-1} c + 30 = \omega^2 \tag{15}$$

Solving (14) and (15) one may get

$$(a_{n}-a_{n-1})c = \mu^{2} - \omega^{2}$$
(16)
Setting $\mu = a_{n} + \lambda$ and $\omega = a_{n-1} + \lambda$
(17)

Applying Equation(17) in (16) one may get

$$c = a_n + a_{n-1} + 2\lambda$$

= 24n² - 24n - 14
(18)

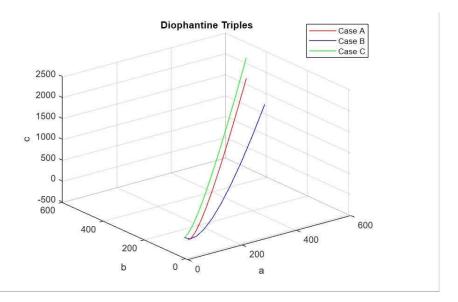
Hence, the triples $(a_n, a_{n-1}, c) = (6n^2 - 5, 6n^2 - 12n + 13, 24n^2 - 24n - 14)$ are Diophantine triples with the property D(30).

The following table provides some numerical illustrations

n	Diophantine Triples	D(30)
1	(1,-5,-14)	30
2	(19,1,34)	30
3	(49,19,130)	30
4	(91,49,274)	30

Remarkable Observation:

It is noted that, the above second order polynomial is of the form $(a_n, a_{n-1}, c) = (star_n + 6n - 6, star_{n-1} + 6n, 4star_{n-2} + 96n - 162)$



5. CONCLUSION

In this article, we have shown a few instances of how to build unique Dio 3 tuples involving the second order polynomial with the right attributes. Also provides graphical representation of the Dio-3 Triples using MATLAB. In conclusion, one can look for Dio 3 tuples for various polynomials with their corresponding attributes.

REFERENCES

- [1] Y.Fujita, "The extendibility of Diophantine pairs {k-1,k+1}", Journal of Number Theory, 128, (2008), pp.322-353. [CrossRef]
- [2] G.Janaki, and C.Saranya, "Special Dio 3-tuples for pentatope number", Journal of Mathematics and Informatics, vol.11, Special issue, (2017), pp.119-123. [CrossRef]
- [3] G. Janaki, and C.Saranya, "Construction of the Diophantine Triple involving Pentatope Number", International Journal for Research in Applied Science & Engineering Technology, vol.6, no. III, (2018), pp.2317-2319. [CrossRef]
- [4] G.Janaki, and C.Saranya, "Half companion sequences of special dio 3-tuples involving Centered square numbers", International Journal for Recent Technology and Engineering, vol.8, issue 3, (2019), pp. 3843-3845. [CrossRef]
- [5] V.Pandichelvi and R.Vanaja, "Generating Diophantine Triples relating to figurate numbers with thought-provoking Property", Jnanabha, vol. 52, no. 2, (2022), pp. 106-110.
 [6] C.Saranya, and G.Janaki, "Some Non-extendable Diophantine Triples involving Centered square
- [6] C.Saranya, and G.Janaki, "Some Non-extendable Diophantine Triples involving Centered square numbers", International Journal of Scientific Research in Mathematical and Statistical Sciences, vol. 6, no. 6, (2019), pp. 105-107.
- [7] C.Saranya, and G.Janaki, "Solution Of Exponential Diophantine Equation Involving Jarasandha Numbers", Advances and Applications in Mathematical Sciences, vol. 18, no. 12, (2019), pp. 1625-1629.
- [8] S.Vidhya, and G.Janaki, "Construction of the Diophantine triple involving Pronic number", International Journal for Research in Applied Science and Engineering Technology, vol. 6, no.1, (2018), pp.2201-2204.
- [9] R.D.Carmichael, "History of Theory of numbers and Diophantine Analysis", Dover Publication, Newyork, (1959).
- [10] L.J.Mordell, "Diophantine equations", Academic press, London, (1969).
- [1] T.Nagell, "Introduction to Number theory", Chelsea publishing company, Newyork, (1981).
- [12] L.K. Hua, "Introduction to the Theory of Numbers", Springer-Verlag, Berlin-Newyork, (1982).
- [13] Oistein Ore, "Number theory and its History", Dover publications, Newyork (1988).